
メソッドを操る

Control methods like a pro
A guide to Ruby’s awesomeness, a.k.a. metaprogramming

OKURA Masafumi, RubyWorld Conference 2021

Methods

Do you want to…

• Add conventions to the order of method invocations

• e.g. MiniTest to call methods starting with “test” automatically

• Modify existing methods without overhead

• e.g. Something like ActiveSupport::Callbacks but without any
performance penalty

Example1: Superclass for abstract logic

Example2: Subclass for concrete logic

Example 3: When we execute a concrete logic

pp @okuramasafumi

• Name: OKURA Masafumi (Masafumi is my first name :D)

• Ruby experience: since 2012

• Work as: Freelance Ruby/Rails dev, tutor

• Organizer of: Kaigi on Rails (https://kaigionrails.org)

• Creator of: Alba gem (JSON serializer, https://github.com/
okuramasafumi/alba) along with a few others

https://kaigionrails.org
https://github.com/okuramasafumi/alba
https://github.com/okuramasafumi/alba

Part1:

Know

Methods

for

methods

Methods that list methods

• Note: these methods return the method name as a Symbol, not the
method object

• `methods` for listing public and protected methods

• `private_methods` for listing private methods

• `singleton_methods` for listing singleton methods, practically
used to list class methods

Methods that fetch method

• `method` for fetching a method object with a given name from an
object

• e.g. `’foo’.method(:gsub)` returns callable/executable Method

• `instance_method` for fetching a method object with a given name
from a class

• e.g. `String.instance_method(:gsub)` does similar, but the
returned object is UnboundMethod that’s not callable

Method
object

Method class

• Associated with a particular object, not only a class

• Callable

• Can be converted into a Proc with `to_proc`

• Can be converted into an UnboundMethod with `unbind`

UnboundMethod class

• Not associated with an object

• Not callable

• Cannot be converted into a Proc since Proc should be callable

• Can be converted into Method with `bind`

Inspect

• `name`

• `parameters`

• `arity`

• `source_location`

• `body`

Demo

Part2:

Define

Define methods

• Using `def` keyword

• Simple

• Static

• Using `define_method` method

• Dynamic

• Can be used with Proc and Method object as a method body

Undefine methods

• Both `undef` keyword and `undef_method` are quite similar

• They both prohibit an object to respond

• `undef_method` is more dynamic

• `remove_method` just removes a method from an object

• When a parent class responds to that method, that will be called

Redefine methods

1. Decide the name of the target

2. Fetch method object using `method`

3. Create a new Proc inside which fetched method object is called
before/after some extra bit

4. Remove a method using `remove_method`

5. Define a new method with the same name using `define_method`
with a newly created Proc as a method body

Demo

Conclusion

• In Ruby, methods are objects

• You can play with them, it’s not scary!

• Metaprogramming gives us the power to do awesome things

• Join us!

Next step

• https://github.com/okuramasafumi/tiny_hooks

• The repository of the second demo, has some nice tricks

• https://docs.ruby-lang.org/en/

• Official document

• And your code!

https://github.com/okuramasafumi/tiny_hooks
https://docs.ruby-lang.org/en/

