XYy Rzigsd

Control methods like a pro

A guide to Ruby’'s awesomeness, a.k.a. metaprogramming

OKURA Masafumi, RubyWorld Conference 2021

Do you want to...

e Add conventions to the order of method invocations
* e.g. MiniTest to call methods starting with “test” automatically
e Modity existing methods without overhead

* e.g. Something like ActiveSupport::Callbacks but without any

performance penalty

Examplel: Superclass for abstract logic

c Logic
call
methods + private_methods).select ‘method_name
method name.start with?('validate
each 'method_name,
m = method(method_name
puts "#{m.name; 1s executed"
m.call

main

Example2: Subclass for concrete logic

require_relative 'logic'
MyLogic < Logic
tnittialize(name L
@name = name

main
puts @name

validate_name_presence
raise 'name 1s not present' @name.nil? | @name.empty?

validate_name_length
raise 'name is too long' @name. length >= 10
raise 'name is too short' @name. length <= 2

Example 3: When we execute a concrete logic

)Y 1r {

trb(main): :001:0> require_relative '
true

trb(matin): :002:0> MyLogic.new(' ").call

validate_name_presence 1s executed

validate_name_length 1s executed

Masafumt

nil

trb(main): :003:0> MyLogic.new.call

validate_name_presence 1s executed
/Users/okuramasafumi/Sandbox/Ruby/control_methods_like_a_pro/my_logic.rb:14:in "validate_name_presen

ce': name is not present (RuntimeError)

pp @okuramasafumi

e Name: OKURA Masafumi (Masafumi is my first name :D)
e Ruby experience: since 2012
e \Work as: Freelance Ruby/Rails dev, tutor

e Organizer ot: Kaigi on Rails (https://kaigionrails.org)

e Creator of: Alba gem (JSON serializer, https://qgithub.com/

okuramasafumi/alba) along with a few others

https://kaigionrails.org
https://github.com/okuramasafumi/alba
https://github.com/okuramasafumi/alba

Methods

Methods that list methods

 Note: these methods return the method name as a Symbol, not the

method object
e ‘'methods’ for listing public and protected methods
e ‘private_methods for listing private methods

e ‘singleton_methods for listing singleton methods, practically

used to list class methods

Methods that fetch method

e ‘'method for fetching a method object with a given name from an

object
e c.g. '"foo’.method(:gsub) returns callable/executable Methoad

* ‘instance_method for fetching a method object with a given name

from a class

* c.g. String.instance_method(:gsub) does similar, but the
returned object is UnboundMethod that's not callable

Method class

e Associated with a particular object, not only a class
e Callable
e Can be converted into a Proc with to_proc

e Can be converted into an UnboundMethod with “unbind’

UnboundMethod class

e Not associated with an object
e Not callable
e Cannot be converted into a Proc since Proc should be callable

e Can be converted into Method with “bind’

Inspect

* name

* parameters

* “arity

e source location

. body

Define methods

e Using def keyword
e Simple
o Static

e Using ‘define_method method
* Dynamic

e Can be used with Proc and Method object as a method body

Undefine methods

e Both ‘'undef keyword and ‘'undef_method are quite similar
* They both prohibit an object to respona

 ‘'undef_method is more dynamic
e remove_method just removes a method from an object

 \When a parent class responds to that method, that will be called

Redefine methods

1. Decide the name of the target
2. Fetch method object using 'method

3. Create a new Proc inside which fetched method object is called

before/after some extra bit
4. Remove a method using remove_method

5. Define a new method with the same name using ‘define_method

with a newly created Proc as a method body

Conclusion

* |n Ruby, methods are objects
® You can play with them, it's not scary!

e Metaprogramming gives us the power to do awesome things

e Join us!

Next step

e https://github.com/okuramasatumi/tiny _hooks

* The repository of the second demo, has some nice tricks

* https://docs.ruby-lang.org/en/

e Official document

e And your code!

https://github.com/okuramasafumi/tiny_hooks
https://docs.ruby-lang.org/en/

